首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55321篇
  免费   2945篇
  国内免费   6303篇
化学   46697篇
晶体学   422篇
力学   543篇
综合类   812篇
数学   6509篇
物理学   9586篇
  2023年   475篇
  2022年   658篇
  2021年   1892篇
  2020年   1337篇
  2019年   1456篇
  2018年   1113篇
  2017年   1301篇
  2016年   1625篇
  2015年   1617篇
  2014年   1960篇
  2013年   3980篇
  2012年   2901篇
  2011年   2684篇
  2010年   2458篇
  2009年   3141篇
  2008年   3386篇
  2007年   3625篇
  2006年   3029篇
  2005年   2346篇
  2004年   2159篇
  2003年   1968篇
  2002年   4303篇
  2001年   1813篇
  2000年   1207篇
  1999年   941篇
  1998年   854篇
  1997年   737篇
  1996年   801篇
  1995年   752篇
  1994年   724篇
  1993年   707篇
  1992年   688篇
  1991年   478篇
  1990年   387篇
  1989年   361篇
  1988年   330篇
  1987年   266篇
  1986年   250篇
  1985年   350篇
  1984年   276篇
  1983年   165篇
  1982年   319篇
  1981年   487篇
  1980年   439篇
  1979年   477篇
  1978年   382篇
  1977年   283篇
  1976年   241篇
  1974年   76篇
  1973年   153篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
In this study, silica-coated Fe3O4 nanoparticle@silylpropyl triethylammonium polyoxometalate catalyst was fabricated and characterized using atomic absorption, inductively coupled plasma optical emission spectrometry, elemental analysis, thermogravimetric analysis, Fourier-transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry analyses. The activity of this catalyst was examined in the synthesis of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones. The bonding of the polyoxometalate to the surface of the nanoparticles exhibited excellent catalytic activity in this synthesis. Besides, the catalyst showed good reusability and recovery from the reaction mixture. Tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones were synthesized in high yields in the presence of inexpensive supported solid acid catalysts under classical heating conditions.  相似文献   
102.
Hyaluronidase (Hyal) can be employed to accomplish a diversity of complications related to hyaluronic acid (HA). Hyal contains some classes of catalysts that cleave HA. This enzyme is detected in several human tissues as well as in animal venoms, pathogenic organisms and cancers. Destructive cancer cells regularly increase the CD44 receptor existing in a cell membrane. This receptor acts as an exact receptor for HA, and HA is recognized to motivate the migration, spread, attack and metastasis of cancer cells. Nearly all of the methods used to purify Hyal are highly costly and not proper for industrial applications. This survey aims to review different methods of Hyal purification, which acts as an anticancer agent by degrading HA in tissues and thus inhibiting the CD44–HA interaction. Hyal can be successfully employed in the management of cancer, which is associated with HA–CD44. This review has described different methods for Hyal purification to prepare an origin to develop a novel purification technique for this highly appreciated protein. Using multiple columns is not applicable for the purification of Hyal and thus cannot be used at the industrial level. It is better to use affinity chromatography of anti-Hyal for Hyal with one-step purification.  相似文献   
103.
Quantitation of drugs used for the treatment of chronic lymphocytic leukemia in various biological matrices during both pre-clinical and clinical developments is very important, often in routine therapeutic drug monitoring. The first developed methods for quantitation were traditionally done on LC in combination with either UV or fluorescence detection. However, the emergence of LC with mass spectrometry in tandem in early 1990s has revolutionized the quantitation as it has provided better sensitivity and selectivity within a shorter run time; therefore it has become the choice of method for the analysis of various drugs. In this article, an overview of various bioanalytical methods (HPLC or LC–MS/MS) for the quantification of drugs for the treatment of chronic lymphocytic leukemia, along with applicability of these methods, is given.  相似文献   
104.
Lipotoxicity is defined as deposition of excess fat associated with an inflammatory response. Metabolomic analysis of fatty acids (FAs) can be a marker of silent inflammation. ω3-Enriched diet, celecoxib, and safranal may have a protective anti-inflammatory role. In this work, total FAs extracted from red blood cells and arachidonic acid-to-eicosapentaenoic acid (AA-to-EPA) ratios were assessed using GC–MS assay in single-ion monitoring mode. The study was conducted on 64 male rats divided into eight groups: I, controls; II, rats received high-fat diet (HFD), III, rats received ω-6-enriched HFD; IV, rats received ω-3-enriched HFD; V, rats received celecoxib with HFD; VI, rats received safranal with HFD; VII and VIII, rats received celecoxib and safranal with ω-3 HFD, respectively. GC–MS Gas chromatography Mass spectrometry was performed for analysis of fatty acid methyl ester. Enzyme-linked immunosorbent assay was used to analyze serum interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-β1) concentrations. A statistically significant decrease of AA-to-EPA ratio was observed in group VII when compared with the groups receiving HFDs. This group also showed the lowest serum IL-6 level and highest TGF-β1 level. In conclusion, ω3-enriched diet along with drugs (e.g. celecoxib) and herbal medications (e.g. safranal) may have an anti-inflammatory effect in lipotoxicity. GC–MS with single-ion monitoring is valid for the analysis of FAs.  相似文献   
105.
For the first time, intensification of monooleoyl glycerol (MOG) synthesis has been investigated in an ultrasonic-infrared-wave (USIRW) promoted batch reactor. Esterification of octadecanoic acid (ODA) with glycerol (Gl) has been conducted [using Amberlyst 36 wet catalyst] in three different reactors, namely traditional batch reactor (TBR), infrared wave promoted batch reactor (IRWPBR), and USIRW-promoted batch reactor (USIRWPBR) to assess the relative efficacy. The energy-efficient USIRWPBR remarkably intensifies the ODA-Gl esterification as manifested through superior ODA conversion (92.5 ± 1.25%) compared to that achieved in IRWPBR (79.8 ± 1.2%) and TBR (36.39 ± 1.25%). The most favorable reaction condition for optimum ODA conversion and maximum MOG yield was identified through statistical optimization over a selected parametric range, namely 3-5 Gl/ODA mole ratio, 0.004-0.006 g/mL Amberlyst 36 catalyst concentration, 300-700 rpm impeller speed, and 333-353 K reaction temperature. The present study also reports the formulation and validation of an innovative reaction kinetics, that is, concurrent noncatalytic and heterogeneously catalyzed (CNCHC) reaction mechanism in addition to the conventional heterogeneous kinetic models (LH and Eley-Rideal mechanisms). Under combined USIRW, the CNCHC esterification mechanism could best describe ODA-Gl esterification (R2 = 0.98) compared to LH (R2 = 0.97) and Eley-Rideal (R2 = 0.88) mechanisms. The optimal product (MOG) was characterized by differential scanning calorimetry and thermogravimetric analysis to assess its crystallization property and thermal stability for possible application as plasticizer/fuel additives.  相似文献   
106.
Liquid-phase esterification of acetic acid with n-butanol to n-butyl acetate is studied in the presence of a polymeric catalyst, that is, poly(o-methylene p-toluene sulfonic acid). The performance of the proposed catalyst is compared with the other commercially available homogeneous and heterogeneous catalysts in terms of its activity. Experiments are conducted in an isothermal stirred batch reactor to study the effects of speed of agitation, temperature, and catalyst loading on the rate of reaction. A concentration-based pseudo-homogeneous (PH) kinetic model and activity-based kinetic models such as PH, Eley-Rideal (ER), and Langmuir-Hinselwood-Hougen-Watson (LHHW) models are developed. All the models considered in this study resulted in similar percentage deviation close to 4%. Further, kinetic models are validated through additional experiments, and it is observed that the simple concentration-based PH model is able to predict experimental data with least deviation compared to activity-based PH, ER, and LHHW models. The developed kinetic models are also tested using the Fisher-Snedecor test (F-test) and are found to be acceptable. By incorporating both modeling data and validation data, the overall absolute average deviations of different models are found to be concentration-based PH model 4.354%, activity-based PH model 5.006%, ER I model 5.189%, ER II model 5.403%, ER III model 5.437%, and LHHW model 6.104%, illustrating the superiority of the simple concentration-based PH model.  相似文献   
107.
We carried out the thermal curing of the copolymers of N-allylmaleimide (AMI) and 2-ethylhexyl acrylate (2EHA) using 1,3,4,6-tetra(2-mercaproethyl)glycoluril ( G1 ), 1,3,4,6-tetra(3-mercaptopropyl)glycoluril ( G2 ), 1,3,4,6-tetraallylglycoluril ( G3 ), triallylisocyanurate (TAIC), and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) as the crosslinkers. Based on the results for the analysis of thiol–ene reactions monitored by IR spectroscopy, it was confirmed that the curing rate significantly depended on the combination of the used crosslinkers. The insoluble fraction after curing was more than 90% for the systems using the glycoluril crosslinkers, while the conversion of the allyl groups was suppressed due to the rigid structure of these crosslinkers. The heat resistance and the mechanical properties of the crosslinked polymers were investigated by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and mechanical tensile tests. For the products cured using the glycoluril crosslinkers, the glass transition temperature (Tg) and the maximum temperature of thermal decomposition (Tmax) were 54–59 °C and 395–409 °C, respectively, being higher than those for the cured product prepared with PEMB and TAIC as the conventional crosslinkers. The elasticity (75–139 MPa), the maximum strength (3.0–4.1 MPa), and the adhesion strength (6.7–10.7 MPa) for the polymers cured with the glycoluril crosslinkers, determined by the mechanical tensile and single lap-shear adhesion tests, were higher than those for cured materials produced with PEMB. Thus, the thermal and mechanical properties of the maleimide copolymers were efficiently enhanced by crosslinking using the rigid glycoluril compounds. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 923–931  相似文献   
108.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   
109.
The utility of pentafluorophenyl esters for the selective introduction of functional units and branch points in well-defined poly(acrylic acid) (PAA) derivatives is demonstrated using a combination of controlled radical polymerization and postpolymerization modification. Reversible addition-fragmentation chain transfer enables the synthesis of well-defined copolymers—poly(pentafluorophenyl acrylate-co-tert-butyl acrylate)—with the active ester repeat units serving as attachment points for reaction with primary amines, specifically tris(2-(t-butoxycarbonyl)ethyl)methyl amine (Behera's amine). Deprotection using trifluoroacetic acid removes both the backbone and side chain t-butyl esters to give a series of branched PAA derivatives containing novel tricarboxylic acid side chains that are well suited to complexation and multidentate interactions. Surprisingly, the active ester homopolymer is shown to have the highest reactivity with Behera's amine when compared to copolymers with lower incorporation of pentafluorophenyl esters, suggesting an intriguing interplay of neighboring group effects and steric interactions. The ability to tune the efficiency of postpolymerization modification gives a library of PAA derivatives.  相似文献   
110.
Boronic acid functionalized materials have gained much attention in both chemistry and biology fields due to their multivalent covalent interactions with cis-diol containing (macro) molecules. The remarkable progress in this field has resulted in the development of their biomedical applications, such as, biosensors and nanocarriers. In this study, the spherical nanoparticles consisting of glycerol and 2,5-thiophenediylbisboronic acid were synthesized by one-pot ring opening copolymerization of a mixture of glycidol and 2,5-thiophenediylbisboronic acid. The synthesized nanoparticles were used for the modification of the glassy carbon electrode and the determination of Guaifenesin. The synthesized polymeric nanoparticles were characterized by different spectroscopic and microscopic methods including UV–vis, IR, NMR, DLS, and SEM. Additionally, the electrochemical behavior of the fabricated electrode toward Guaifenesin was investigated with cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号